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ABSTRACT: In the paper, a general method for 
applying the sliding mode control to the electronic 
power converters operating as variable structure 
nonlinear systems is developed. Unlike the method 
proposed by Bühler (Bühler 1986), this one may be 
aplied even if the reactive elements (L, C) of the 
converter are placed in front as well as behind the 
switch/switches. A new block diagram and a 
switching function for the variable structure systems 
are proposed. Everyone of the state equations systems 
matrices is written as a sum of two matrices and a 
matrix in every sum is multiplied by the switching 
function. The state equations of the overall 
"convertor + load " circuit, the switching law, the 
equivalent control signal, the existence conditions and 
the switching frequency are presented. The method is 
applied to three particular sliding mode control 
power converters. 
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1. INTRODUCTION 
 

Generally, the power electronic converters are 
circuits embodying diodes and static switches, consisting 
in conventional thyristors, gate turn-off thyristors, 
bipolar junction transistors, power MOS-FETs, insulated 
gate bipolar transistors (IGBT), passive elements (R, L, 
C) and independent voltage and current generators. In 
these circuits, after every commutation of the switches,  
the equivalent structure of the circuit changes. In the  
 

 
 
same time, different nonlinearities appear (relay type  
nonlinearities, hysteresis type nonlinearities, etc). These 
circuits are called "variable structure nonlinear systems". 

A very suitable method for the control of this type 
of systems is the sliding mode control. 

 
 

2. PROPOSED SOLUTION  
 

In (Bühler 1986) for a variable structure system 
using sliding mode control, a block diagram model is 
proposed, where the power converter is represented by a 
switch and its reactive elements are included in the load. 
This diagram is useful only if the reactive elements (L, 
C) of the converter are placed behind the switch (for 
instance, the dc-dc Buck converter). The power 
converters possessing reactive elements in front of and 
behind the switch/switches cannot be described by this 
diagram. Such converters are the dc-dc Boost converter  
and the single phase inverter active filter. For analyzing 
the systems of this type, we propose the general block 
diagram in fig.1. 

In the block diagram in fig.1, the power block is no 
more a switch but a power converter possessing static 
switches and passive elements (R, L, C). In a power 
converter there are two variables determining its state: 
the supply voltage "e" and the control signal of the 
converter static switches. Therefore, we consider the 
power converter to be characterized by a switching 
function "z" which takes into account the state of the 
circuit switches; this state is determined by the 
comparator, that is by the actuating signal.  

 

 
Fig.1. The block diagram of a variable structure nonlinear system using sliding mode control  
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The switching function allows the writing of the state 
equations not only for the load S, but for the overall 
circuit "power converter + load".  

The state vector for the overall  "power converter + 
load" circuit is composed of the state variables of the 

load S (the vector sx ) and the state variables introduced 
by the reactive elements (L, C) of the converter (the 

vector cx ).If we denote by x  the state vector of the 
overall  "power converter + load" circuit, we can write 
its state equations system: 







=

+=

xTcy

bexAx!
     (1) 

where: 
T

cxsxx = ; 

e - the input (generally, the supply voltage of the 
converter); 
A - a quadratic matrix depending of the elements (R, L, 
C) of the overall "converter + load" circuit and the 
switching function "z".The quadratic matrix A can be 
splited in two quadratic matrices 1A  and 2A  which 
depend on the elements (R, L, C) of the overall 
"converter + load" circuit, the matrix 2A  being 
multiplied by the switching function "z" in the following 
way: 

2zA1AA +=      (2) 
b - a column vector determined by the elements (R, L, C) 
of the overall "converter + load" circuit and the 
switching function "z". The column vector "b" can be 
splited in two column vectors 1b  and 2b  which are 
determined by the passive elements of the overall 
"converter + load" circuit, the vector 2b  being 
multiplied by the switching function "z": 

2zb1bb +=      (3) 




= T
ccT

scTc , where T
sc  corresponds to the vector 

sx  and T
cc  corresponds to the vector cx . 

• The switching law 
From fig.1. results: 

( ) wwkxTkx +−=ε     (4) 
• The equivalent control signal 

Substituting the vector 
•
x , as it is expressed in (1), 

in the derivative of the switching law (4) and equating it 
to zero, results: 

( ) 0wwkbexATk =
•

++−    
Substituting in this equation A and b as they are 

expressed in (2) and (3) respectively and taking into 
account that equivzz = , the equivalent control signal is 
obtained: 



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 ++−⋅

+
= wwk)e1bx1A(Tk

)e2bx2A(Tk

1
equivz !  (5) 

• Existence conditions 
From equation (5), the following existence 
conditions of the sliding mode derive: 







<<
≠+⋅

maxzequivzminz)b
0)e2bx2A(Tk)a    (6) 

• Control system with integral controller 
The control system shown in fig.1. has a 

proportional behavior and, therefore, a stationary error 
exists. This disadvantage may be removed by adding an I 
controller, as one can see in fig.2. For the control system 
with I controller, a new state variable Rx  is to de added 
to the state vector which shall be represented by the 
same letter x .  

The integral controller is described by the 
differential equation: 

( ) )xTcw(iT/1Rx −⋅=! , where iT  is the time constant. 
The state equation in this case is obtained by adding 

the state equation of the system without I controller to te 
differential equation of the integral controller. We get: 

wwbbexAx ++=!               (7) 
where: 

0iT/T
sc

0sA
A = ; 

Rx
sx

x = ;   
0
sb

b = ;   

iT
1
0

wb = . 

The index "s" points the variables in the system 
without the I controller, shown in fig.1.  

The switching law, the equivalent control signal and 
the existence conditions can be obtained in a way similar 
to the system without I controller.  
 

 
Fig.2. Variable structure control system with I controller 



• The maximum switching frequency 
In fig.3, the comparator hysteresis in terms of the 

error ( )xε  (fig.3a) as well as the error ( )xε  variation 
(fig.3b) are shown. The comparator hysteresis is, in fact, 
the control signal hysteresis, that is the switching 
function "z". 

 

 
             a) 

 
 

b) 
 

Fig.3. a) the hysteresis of "z"; b) the error variation 
( )xε  (switching law) 

 
In order to get the switching frequency, the control 

signal (the switching frequency) takes the values minz  
and maxz . 

When the reference signal w is constant, its 

derivative 0=
•
w . Derivating the switching law given 

by (4), results: 

xTk)x( !! =ε                    (8) 
Taking into account eqs. (2) and (3), a new form for 

equation (1) results: 
z)e2bx2A(e1bx1Ax +++=!                  (9) 

Substituting eq. (9) in eq. (8) and taking into 
account that limzz = , we have: 

[ ]limz)e2bx2A(e1bx1ATk)x( +++−=ε!          (10) 
where limz  equals maxz  or minz . 

For equivzz = , ( ) 0x =
•
ε , that is: 

[ ] 0equivz)e2bx2A(e1bx1ATk =+++−             (11) 
Subtracting (11) from (10), we get: 

)equivzlimz()e2bx2A(Tk)x( −⋅+⋅=ε!              (12) 
According to fig.3b we may write: 

)x(
2

dt ε
ε∆

!−
= ; 

)x(
2

ct ε
ε∆

!
= ; 

dtct
1

cf +
=                (13) 

For determining  ct , limz  is replaced  by maxz  in 
eq. (12) and for dt , limz  is replaced by minz . 

Using eqs.(12) and (13), the expression of the 
switching frequency cf  results: 

minzmaxz
)minzequivz()equivzmaxz(

2
)e2bx2A(Tk

cf −

−⋅−
⋅+=

ε∆
      (14) 

The switching frequency cancels for maxzequivz =  

and minzequivz = . It is maximum for: 

( ) 2/minzmaxzequivz +=  
and its maximum value is: 

)minzmaxz(
8

)e2bx2A(Tk
maxcf −⋅+=

ε∆
              (15) 

In the switching frequency expression (15) as well 
as in the expression of the maximum switching 
frequency, one can find the term e2bx2A +  instead of 
"b" in the similar formulas given in (Bühler 1986). For 

02A = and be2b = , the corresponding expressions in 
(Bühler 1986) are obtained. 

The expression " e2bx2A + " points out that the 
switching frequency as well as its maximum value 
depend on the state vector, that is the maximum 
switching frequency is not constant. 

By means of the block diagram given by Bühler 
(Bühler 1986), the variable structure nonlinear systems 
can be analyzed using the sliding mode control; the 
matrix A is independent of the switching function "z" 
( 02A = ) and the input "u" may be written: zeu = , 
that is 01b = . 

The matrix A is independent of the switching 
function "z" when the switch and the load S can be 
separated, that is when there are no reactive elements 
(inductances or capacitors) between the voltage supply 
and the switch of the converter, as one can see in the dc-
dc Buck converter diagram. 

 

 
3. APPLICATIONS 
 
3.1. The dc-dc Buck Converter 
 

In fig.4, the block diagram of a dc-dc Buck 
converter using the sliding mode control for the current 
Li  is shown. 

The switching function is: 





=
off isTrif0
on isTrif1

z  



According to the notations in fig.4, for the state 
variables Cu  and Li  we can write the state equation 
system: 

ebxAx +=! ,  
where: 

Li
cu

x = ; 2Az1AA += ; 
0

L
1

C
1

RC
1

1A
−

−
= ; 02A =  

L
1
0

z2bz1bb =+=  ;       01b =  ;       Ee =  

 
 

Fig.4. The block diagram of the sliding mode 
control dc-dc Buck type converter 

 
As 01b2A == , the  matrix A is independent of the 

switching function "z" and the input u=ze, hence this 
diagram may be analyzed in the same way as the block 
diagram proposed by Bühler (Bühler, 1986). 
• The switching law 

wxTk)x( +−=ε ,   where ik0Tk =  
• The equivalent control signal 

Using eq. (5), results: 

E
cu

equivz =  

• The conditions of existence 
Using eqs. (6), we get: 










<<

≠=+

obviously,1
E
cu

0)b

0
L
Eik
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• The maximum switching frequency 
Using eq. (15) and taking into account that 

1maxz =  and 0minz = , we get: 

ε∆8
E

L
ik

maxcf ⋅=  

As the converter satisfies the conditions of the block 
diagram proposed by Bühler, maxcf  is constant and 
independent of the state variables. 

 
 

3.2. The dc-dc Boost Type Converter 
 

In fig.5, the block diagram of a dc-dc Boost type 
converter using the sliding mode control for the control 
of the current Li  is shown. The circuit may be used, for 
instance, to design a diode rectifier able to absorb a sine 
wave current from the electric net, thus improving the 
power factor; the voltage "e" is the rectified net voltage. 

The reference value of the current *i  is the product 
between a signal proportional to the supply voltage "e" 
and the signal "k" which is the output of the controller 
which controls the voltage cu  across the capacitor. 

 

 
Fig.5. The block diagram of the sliding mode control 

dc-dc Boost type converter 
 

The switching function is: 





=
off isTrif1
on isTrif0

z  

According to the notations in fig.5, considering the 
state variables Cu  and Li , we can write the state 
equation system: 

ebxAx +=!  
where: 

Li
cu

x = ; 2Az1AA += ; 
00

0
RC
1

1A −= ; 
0

L
1

C
10

2A
−

=  ; 

2bz1bb += ;       
L
1
0

1b = ;       02b =  

and "e" is the rectified sine wave voltage. 
Taking into account that the matrix A depends on 

the switching function "z", as the inductance L separates 
the supply voltage "e" and the switch Tr, for this diagram 
we cannot use any more the considerations applicable to 
the diagram proposed by Bühler. 
• The switching law 

*ixTk)x( +−=ε  ,   where  ik0Tk =  
 
 



• The equivalent control signal  



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• Existence conditions 

( )
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
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0cu
L

ik
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• The maximum switching frequency 
Taking into account that 1maxz =  and 0minz = , 

from (15) results: 

cu
L
ik

8
1

maxcf ⋅=
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Consequently, the switching frequency is 
proportional to the state variable " cu ". 

 
3.3. Single Phase Inverter Active Filter 

 
In fig.6, the block diagram of a sliding mode control 

single phase inverter active filter is shown. 
 

 
Fig.6. The block diagram of the single phase 

inverter active filter 
 

• The switching function 
For the inverter transistors 4T ,3T ,2T ,1T  we define 

the switching functions iz  (i=1, 2, 3, 4): 





=
off isiTif0
on isiTif1

iz  

• The operation mode of the inverter 
The operation mode for the 1T , 2T  and for 3T , 4T  

transistors is specified by table 1, respectively by tabel 2. 
 

 ε > 0 ε < 0 
z1 0 1 
z2 1 0 
Table 1: The operation mode of the 

transistors 1T  and 2T  

 e < 0 e > 0 
z3 1 0 
z4 0 1 
Table 2: The operation mode of the 

transistors 3T  and 4T  
 

From the tables 1 and 2 results that the operation of 
the transistors 1T , 2T  is determined by the sign of the 

error ( )xε  and the operation of the transistors  3T , 4T  is 
determined by the sign of the supply voltage "e". 

When transistors 1T  and 4T  are on, transistors 2T  
and 3T  are off and viceversa. Consequently: 





=+
=+

14z3z
12z1z

                 (16) 

According to the notations in fig.6, we can write: 
( ) cu3z2z4z1zxe −=                 (17) 

Also: 
( )

2
esgn1

4z +=                  (18) 

Considering cu  and Li  as state variables and 
taking into account the eqs. (16), (17) and (18), we can 
write: 

bexAx +=!  
where: 

Li
cu

x = ;   2A1z1AA += ;   

( )

( ) 0
L2

esgn1
C2

1esgn0
1A −

−

=  

0
L
1

C
10

2A −= ; 2b1z1bb += ; 
L
1
0

1b = ;   02b =  

e - the sine wave supply voltage 
Taking into account that the matrix A depends on 

the switching function 1z , the conclusions obtained by 
means of the block diagram given by Bühler are no more 
valid. 
• The switching law 

According to the notations in fig.6, we get: 

xTksiik*i)x( −−=ε  

where ik0Tk =  
• The equivalent control signal  

( )
cu
e

2
esgn1*i

ik
1

si
cu
L

equivz +
−

+





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• The existence conditions 

( )





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1equiv1z0)b
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ik
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These conditions are satisfied. 
• The maximum switching frequency 

Takind into account that 1max1z =  and 
0min1z = , from (15) results: 



cu
L
ik

8
1

maxcf ⋅=
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Consequently, the switching frequency is 
proportional to the state variable " cu ". 
 
 
4. CONCLUSIONS 
 

In the paper a new block diagram for the nonlinear 
variable structure systems, using the sliding mode 
control is proposed and discussed; this diagram is much 
more general than the corresponding one proposed by 
Bühler (Bühler, 1986). 

This block diagram is useful for describing all the 
nonlinear, variable structure systems which use 
electronic power converters and can be applied to the 
nonlinear variable structure systems whose matrices A 
and b depend, besides the elements (R, L, C) on the 
switching function "z". 

In order to write the state equations of the overall 
"power converter + load" circuit, we proposed to write 
everyone of the matrices A and b as a  sum of two 
matrices depending only on the passive elements of the 
circuit; one of the matrices in the sum is multiplied by 
the switching function "z". 

Starting from the state equatons of the overall 
"power converter + load" circuit, we obtained: 

 
 

- the switching law; 
- the equivalent control signal; 
- the existence conditions for the sliding mode 

control; 
- the maximum switching frequency. 

These theoretical results have been applied to the 
sliding mode control power converters. 
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